Murray Hill Parkway Site September 30, 1992

Report No.: J078-SIP

Rev. No.: 0

CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Summary and Recommendation

The recommendation SITE EVALUATION ACCOMPLISHED is given to the Murray Hill Parkway Site. The existing information, data, and additional information collected were sufficient to evaluate the site to determine that no further CERCLA remedial action is needed. This assessment indicates that there is a minimal impact to human and environmental receptors applicable to each pathway evaluation because of the significant distance from the site to those receptors. The recent sampling results indicate no significant concentration of any contaminant attributable to site activities.

APPENDIX D SITE INSPECTION WORKSHEETS

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Stre Name: Manay Hell Parking Site Date: (MHPS)

GENERAL INFORMATION (continued)

Source	Des	cripti	ons:

- Previous storage of 200 draws of ink waste; no longer stard. - contaminated soil from spills and poor housekeeping.

Hazardous Waste Quantity (HWQ) Calculations:

(See SI Tables 1 and 2)

Multisource site

-3-4 Acres of contaminated sil = 5.13

- 200 drums => 200 = 20

20,00

5.13

25.13

- 10 HWQ

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE Site Name: WHYS

Date:

SI TABLE 1: HAZARDOUS WASTE QUANTITY (HWQ) SCORES FOR SINGLE SOURCE SITES AND FORMULAS FOR MULTIPLE SOURCE SITES

	T	1				
7			S	INGLE SOURCE SITES	(assigned HWQ score	s)
Ř	SOURCE TYPE		HWQ = 10	HWQ = 100	HWQ = 10,000	HWQ = 1,000,000
C-20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	N/A		≤100 Rbs	>100 to 10,000 lbs	>10,000 to 1,000,000 the	>1,000,000 the
W40740744A	N/A		≤500,000 ibe	>500,000 to 50 million lbe	>50 million to 6 billion lbe	>6 billion lbs
	Landfill		≤6.75 million ft ³ ≤250,000 yd ³	> 6.75 million to 675 million ft ² > 250,000 to 25 million yd ⁹	> 676 million to 67.5 billion ft ³ > 25 million to 2.5 billion ye ⁹	> 67.6 billion ft ³ > 2.6 billion yd ⁹
	Surface impoundment		≤6,750 ft³ ≤ 250 yd³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³	> 675,000 to 67.5 million ft ³ > 25,000 to 2.5 million yd ³	>67.5 million ft ⁰ >2.5 million yd ⁰
l °	Drums		\$1,000 druma	>1,000 to 100,000 drums	> 100,000 to 10 million drums	>10 million drums
N W W	Tanks and non- drum containers		≤50,000 gallons	>50,000 to 5 million gallons	>5 million to 500 million gallons	> 500 million gallons
	Contaminated soil		≤8.75 million ft³ ≤250,000 yd³	> 6.75 million to 675 million ft ² > 250,000 to 25 million yel ⁸	> 675 million to 67.5 billion ft ³ > 25 million to 2.5 billion ye ⁸	> 67.5 billion ft ³ > 2.5 billion yd ³
	Pile		≤6,750 ft³ ≤250 yd³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³	>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ⁹	>67.5 million ft ³ >2.5 million yd ³
	Landfill		≤340,000 ft ^a ≤7.8 acres	>340,000 to 34 million ft ^b >7.8 to 780 acres	>34 million to 3.4 billion ft ² >780 to 78,000 scres	> 3.4 billion ft ² > 78,000 acres
	Surface impoundment		\$1,300 ft ² \$0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 scree	>130,000 to 13 million ft ⁰ >2.9 to 290 acree	>13 million ft ³ >290 acres
A	Contaminated soil	/	≤3.4 million ft ^d ≤78 scree	3.4 million to 340 million ft ³ >78 to 7,800 acres	>340 million to 34 billion ft ³ >7,800 to 780,000 acres	>34 billion ft ² >780,000 acree
	Pile*		≤1,300 R ² ≤0.029 acree	>1,300 to 130,000 ft ² >0.029 to 2.9 acres	>130,000 to 13 million to 2.9 to 290 scree	>13 million ft ² >290 acres
	Lend treatment		≤ 27,000 ft ² ≤ 0.62 acree	>27,000 to 2.7 million ft ² >0.62 to 62 acres	> 2.7 million to 270 million ft ² > 62 to 6,200 scree	> 270 million ft ² > 6,200 acres

1 ten = 2,000 fbs = 1 yd² = 4 drums = 200 gallons

3 3

SI TABLE 2: HWQ SCORES FOR MULTIPLE SOURCE SITES

- 44	
Source WQ Total	HWO Share
50 w 100	10
> 100 to 10,000	100
>10,000 to 1 million	10,000
l	

MULTIPLE SOURCE SITES

Formule for Assigning Source WQ **Values**

bs + 1

Bs + 5,000

 $ft^3 + 67,500$ $yd^{0} + 2,500$

 $10^3 + 67.5$ yd + 2.5

(drums + 19)

gallons + 500

 $ft^2 + 67,500$ yd + 2,500

 $ft^3 + 67.5$

 $yd^3 + 2.5$ $ft^2 + 3,400$ acres +

0.078 M + 13 acres +

0.00029 12 + 34,000

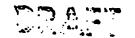
acres + 0.78 12 + 13

acres + 0.00029 ft + 270

acres + 0.0062

^{*} Use area of land surface under pile, not surface area of pile.

Site Name: MHPS


SI TABLE 3: SOURCE HAZARDOUS SUBSTANCE SUMMARY

Source ID: QW Toxicity/ Ecote delty/ N Toxicity/ Textaty/ Persistence/ Persistence/ To doty/ Mobility Persistence Toxidity Biosocumulation Ecobio accumulation Mobility Hezerdous Substance 5 X103 100 10.000 5 X106 LEAD 10 000 5 X105 5 X 106 0.1 ZINC 10 0.002 5 X 108 5 X 10 3 APOCLOR - 1254 (PCB) 10 000 10,000 5X108 5X108 100 10.000 2 10,000 Highest Values Source ID: Highest Values Source ID: Highest Values Highest Value 10.000 5x10° 10.000 (Al Sources)

Site Name: MHPS
Date:

GROUND WATER PATHWAY WORKSHEET

มูกง 6 1991		Data	
IKELIHOOD OF RELEASE	Score	Type	Reference
OBSERVED RELEASE: If sampling data or direct observation support a release to ground water, assign a score of 550. Record observed release substances on SI Table 4.			
 NO OBSERVED RELEASE: If sampling data do not support a release to ground water, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of 500; otherwise, assign a score of 340. 	500		
LR =	500		
TARGETS	~		1
Are any wells part of a blended system? Yes No If yes, attach a page to show apportionment calculations.			
 ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates that any drinking- water well has been exposed to a hazardous substance from the site, calculate the factor score based on the number of people served by using SI Table 5. 			
Level I: people x 10 = Total =	0		
4. POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking-water wells that are not exposed to a hazardous substance from the site; record the population for each distance category in SI Table 6a or 6b, and assign the total population score.	132		
5. NEAREST WELL: Assign a score of 50 for any Level I Actual Contamination Targets. Assign a score of 45 if there are Level II targets but no Level I targets. If no Actual Contamination Targets exist, assign the Nearest Well score from SI Table 6a or 6b. If no drinking-water wells exist within 4 miles, assign 0.	3		
6. WELLHEAD PROTECTION AREA (WHPA): If any source lies within or above a WHPA, or if a ground water observed release has occurred within a WHPA, assign a score of 20; assign 5 if neither condition applies but a WHPA is within 4 miles; otherwise assign 0.	0		
7. RESOURCES	5		
T.	140	1	7

Site Name: MHPS
Date:

SI TABLE 6: VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS IN NON-KARST AQUIFERS

		Nearest			Popu	detion Se	ved by W	ally With	Office	2	*		
ł	İ	Well	,	11	31	101	301	1,001	2,007	10,001	30,001	100,007	
Distance from Site	Population	(choose highest)	10	30	100	300	1,000	7,000	10,000	30,000	100,000	300,000	Papulatian Value
O to X mile	0	20	1	2	5	16	52	163	521	1,633	5,214	16,325	0
>X to X mile	0	18	1 .	1	3	10	32	101	323	1,012	3,233	10,121	0
>% to 1 mile	0	•	,	1	2	6	17	52	167	522	1,668	5,224	0
>1 to 2 miles	0	5	1	1	1	3	•	29	94	294	939	2,938	0
>2 to 3 miles	3		①	1	1	2	7	21	68	212	678	2,122	
>3 to 4 miles	<u>27,00</u> 0	2	1	1	1	1	4	13	42	131	417	1,306	13/
	Nearest Well -	3						_			S	core -	130

SI TABLE 7: VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TÄRGET POPULATIONS IN KARST AQUIFERS

nudetion for kee	20 -		11 20 30	31 20 100	101 200	301 40 1,000	1,001 to 3,000	2,001 to 10,000	10,001 to 30,000	30,001 to 100,000		Papuletien Value
20			30	100	300	1,000	2,000	10,000	30,000	100,000	300,000	
20	1											Value
	,	-	2	5	10	52	102					
20	1.			l	'		103	521	1,633	5,214	16,325	
	1 '	1	1	3	10	32	10,1	323		3,233	10,121	
20	1	1	1	3	•	26	8 2	261	2 816	2,607	8,162	
20	1		1	3		26	82	261	816	2,607	8,162	
20	1		1	3	8	26	82	261	₹ 816	2,607	8,162	
20	1		1	3		26	82	261	816	2,607	8,162	
	20 20 20 20	20 1 20 1 20 1	20 1 20 1 20 1	20 1 1 1 1	20 1 1 3 20 1 1 3 3 20 1 1 3 3	20	20	20	20	20	20	20

DRAFT

CONFIDENTIAL -NOT FOR PUBLIC RELEASE

Site Name: MHP5 Date:

GROUND WATER PATHWAY (concluded)

WASTE CHARACTERISTICS

8. If you have identified any Actual Contamination Targets for ground water, assign the hazardous waste quantity score calculated on page 4, or a score of 100, whichever is GREATER; if you have NOT identified any Actual Contamination Targets for ground water. assign the hazardous waste quantity score calculated on page 4. 10 9. Assign the highest ground water toxicity/mobility value from SI Table 3 or 4. 100 10. Multiply the ground water toxicity/mobility and waste quantity scores. Assign the Waste Characteristics score from the table below: WC Score Product WC Score **Product** wc -6 10,000 to <1E+05 ō 10 1E+05 to <1E+06 1 >0 to <10 18 1E+08 to <1E+07 10 to < 100 2 32 1E+07 to <1E+08

1E+08 or greater

3

6

GROUND WATER PATHWAY SCORE: (subject to a maximum of 100)

· Market of Property of the Control
100 to < 1,000

1,000 to < 10,000

LR x T x WC 5.09 82,500

58

Site Name: MHP5 Date:

6 1991 SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET NOW

LIKE	LIHOOD OF RELEASE			Score	Data Type	References
	DBSERVED RELEASE: If sampling data or direct observater, assign a score of 550. Record observed release					
	NO OBSERVED RELEASE: If sampling data do not sug					
	Distance to suface water < 2500 feet	500]			
	Distance to surface water > 2500 feet, and	500	-		1	
	Site in annual or 10-yr floodplain Site in 100-yr floodplain	500 400	-			
	Site in 500-yr floodplain	300			1	
	Site outside 500-yr floodplain	100]	500		
. 			LR =	500		
DRI	NKING WATER THREAT TARGETS					
	Record the water body type, flow (if applicable), and by each drinking-water intake within the target distan					
	intake within the target distance limit, assign 0 to fac					
(Intake Name Water Body Type	Flow	People Served		1	ì
			fs			
•			fs _	ļ		}
			fs		1	
•	Are any intakes part of a blended system?				╅──	┨
	If yes, attach a page to show apportionment					
4.	ACTUAL CONTAMINATION TARGETS: If analytical	evidence india	rates that any drinking.	İ	1	
	water intake listed above has been exposed to a haza			ţ		
	intake name and calculate the factor score based on				1	
				1		1
	Level 1:	people x	10 =			
	Level II:	people x	1 = Total =	0	<u> </u>]
5.	POTENTIAL CONTAMINATION TARGETS: Determin	ne the numbe	r of people served by		•	
	drinking-water intakes that have not been exposed to	o a hazardous	substance from the site.		1	Ī
	and assign the total population score from SI Table 9	3 .		0		
6.	NEAREST INTAKE: Assign a score of 50 for any Ac	tual Contamii	nation Targets.			1
İ	Assign a score of 45 if there are Level II targets but		•	1		
	Contamination Targets exist, assign the nearest inta	ke score from	SI Table 9. If no			
i	drinking-water intakes exist, assign 0.			0		1
7.	RESOURCES			0		
<u> </u>						1
			Τ.		ł	1

DRAFT JUNES 1817

Site Name: MHP5 Date:

SI TABLE 10: VALUES FOR POTENTIAL CONTAMINATION SURFACE WATER TARGET POPULATIONS

face Water		Nearest	3.70			opulation	Served by			W.Catem	3 2000			
y Flow		Intako	,	31	101	301	1,001	4,001	10,001	30,001	100,001	300,001	1,000,001	
vectoristics "		(channe												Population
SI Table 11)	Population	Maheeti	20	100	/ 300	1,000	2000	10,000	30,000	100,000	300,000	1,000,000	2,000,000	Value
) ofe		20	2	7 5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	
o 100 efe		2			2	5	16	62	163	521	1,633	5,214	16,325	
10 to 1,000 ofe		1	0	0	1×1	,	2	5	16	52	163	521	1,633	
000 to 10,000 etc		0	6	0	g/	0	1	1	2	5	16	52	163	
),000 els er it Lakes		0	0	o ·	0	0	0	0	1	1	2	6	16	
le Mhdng Zone		10	1	3	8	26	82	261	816	2,607	8,162	26,068	81,623	
Ngartet Intake - Score -														

SI TABLE 11: SURFACE WATER TYPE / FLOW CHARACTERISTICS WITH **DILUTION WEIGHTS FOR POTENTIAL CONTAMINATION SURFACE WATER SENSITIVE ENVIRONMENTS**

Water Body Type :	or Flow Characteristics	Dilution Weight
minimal stream small to mederate stream moderate to large stream large stream to river large river	flow less than 10 afs flow 10 to 100 afs flow greater than 100 to 1,000 afs flow greater than 1,000 to 10,000 afs flow greater than 10,000 afs	1 0.1
3-mile mixing zone of quiet flowing streams or rivers	flow 10 ofe or greater	
ocastal tidel water (herbors, sounds, bays, etc.), ocean, or Greet Lakes	N/A	

Site Name: MHPS
Date:

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT WORKSHEET

H	JMAN FOO	D CHAIN THREAT TARG	ETS			Score	Type	Reference
8.	the 15-mile	target distance limit. If there nit, assign a score of O at the	vs (if applicable) for all fishering are no fisheries within the tabottom of this page and process.	rget				
	Fishery Na	me (Species or Water Body)	Water Body Type	Flow				
	1	Vensack Rives work Bay	Kives > Coastal Tilal -	/000 cls			:	
		<u> </u>		U/A_cfs				
				cfs				
				cfs				
	Level I fish		on SI Table 12. Assign a sc In either case, do not evaluat	•	, are		۲.	
10	Contamina	tion Fisheries, assign a Potent	ES: If you have not identified ial Contamination Fisheries so thery within the 15-mile targe	ore from the ta				
	Low	vest Flow	Potential Fis	heries Score	ı			
		10 cfs		1				
	10	to 100 cfs		3				
١	1	00 cfs, coastal tidal waters,				,		I
	loce	ans, or Great Lakes		1 1		<i>I</i> 1	1	
l	(000	,		<u>'</u>		/		

Site Name: MHP5 Date:

SURFACE WATER PATHWAY (continued) **ENVIRONMENTAL THREAT WORKSHEET**

EN	VIRONMENTAL TH	HREAT TARGETS	S				Score	Data Type	Reference
11.	Determine the water sensitive environment and 15). If there are limit, assign a Target page 20.	nts within the 15-m no sensitive enviro	ile target distance coments within the	limit (see SI ' 15-mile targ	Tables 14 et distance	•			
1	Environment Name	and Type	Water Boo	ty Type	Flow		•• A.•		
	WERANDS		BERRYS	CREEK II	DAL CIS	İ			
<u> </u>	FED. END. SPECI		BARRYS		DAL CIS				
	Some THREAT.		_	CREEK IN	on cis				
	WERANDS ALONS			70	cfs	ł			l
	FROM SITE TO	BALKYS CLEEK	Some S	TREUM </td <td>OU cfs</td> <td>_]</td> <td></td> <td></td> <td>!</td>	OU cfs	_]			!
	sensitive environmer information on SI Ta SI Table 14 or 15.	ble 13, and assign	a factor score usir	ng the environ	ment valu				
1			Type and Value	Multiplier					
1	Environment Name	(SI Tabl	es 14 or 15j	Level I, 1 fo		Product			1
1			X						
			x			 	ŀ	Į	1
1			^			1			
13.	POTENTIAL CONTA A. For Potentially C with flows of 10		tive Environments	located on su	Irface wate	er bodies			
		Dilution Weight	Environment Typ	pe and Value	7 T			l	1
	Flow	(SI Table 11)	(SI Tables 1		44	Product '		.	
	7 99 cfs	0./ x	WERMO (2			0.25		1	
-	cfs	x			× 0.1 =		l		İ
1	cfs				× 0.1 =		j		
1	cfs	X			× 0.1 =				
1	cfs	X.			x 0.1 =		1 2-		
				•		Sum =	0.25	 	┥
	B. If any Potentially bodies with flow	y Contaminated Servs of greater than 1			on surfac	e water	1		
						T =	1.25]

Site Name: MHP5
Date:

SI TABLE 14: SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

Sensitive Environment Critical habitet for Federally designated endangered or threatened species	100
Merine Senatuery	
National Park	
Designated Federal Wilderness Area	
Ecologically important areas identified under the Coastal Zone Wilderness Act	
Sensitive Areas identified under the National Estuary Program or Near Coastal Water Program of the Clean Water Act	
Critical Areas Identified under the Clean Lakes Program of the Clean Water Act (subareas in lakes or entire small lakes)	ı
National Monument (Air Pathway Only)	
National Seashore Recreation Area	
	. ••
Habitat known to be used by Federally designated or proposed endangered or threatened species	75
National Preserve	
Netional or State Wildlife Refuge	
Unit of Coestal Barrier Resources System	
Federal land designated for the protection of natural ecosystems	_
Administratively Proposed Federal Wilderness Area	•
Spawning areas critical for the maintenance of fish/shellfish species within a river system, bay or estuary	
Migratory pathways and feeding areas critical for the maintenance of anadromous fish species within river reaches	
or areas in lakes or coastal tidal waters in which the fish spend extended periods of time	
Terrestrial areas utilized by large or dense aggregations of vertebrate animals (semi-equatic foragers) for breeding	
National river reach designated as recreational	
Hebitat known to be used by State designated endangered or threatened species	50
Habitet known to be used by a species under review as to its Federal endangered or threatened status	
Coastel Barrier (partially developed)	
Federally designated Scenic or Wild River	
State land designated for wildlife or game management	25
State designated Scenic or Wild River	
State designated Natural Area	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated areas for the protection or maintenance of equatic life under the Clean Water Act	5
See SI Table 15 (Surface V	Vator Pathwa
*Wetfands or	

SI TABLE 15: SURFACE WATER WETLANDS FRONTAGE VALUES

Less than 0.1 mile	0
0.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater then 2 to 3 miles	78
Greater than 3 to 4 miles	100
Greater than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater then 12 to 16 miles	350
Greater than 16 to 20 miles	450
Greater than 20 miles	500

DRAFT CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Site Name: MH75 Date:

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

CHARACTERISTICS	·····				Score
lous waste quantity score TER; if you have NOT iden	calculated on tified any Act	page 4, ual Con	or a score of 100, tamination Targets	whichever is	, 10 mag
. Multiply each by the sur	face water water water water using the	table be	intity score, and de clow.	ce factors listed Itermine the wast	
			Hazardous Waste Quantity	Product	WC Score
ity/Persistence	10,000	X	10	100,000	/8 (meximum of 100)
ity/Persistence/	5 X 10	8 x	10	5X109	(Maximum et /80 1,000)
xicity/Persistence/			10		(maximum of 1,000)
Product	WC Score		Product .	•	Marie de la compara de la comp
0	0	1E+0	6 to <1E+07		A CONTRACTOR
>0 to <10	1	1E+0	7 to <1E+08	56	
10 to < 100	2	1E+0	8 to < 1E+09	100	
100 to < 1,000	3			180	
	6			320	*
11E+05 to <1E+06	18	1 15+	12 or greater	1000 i	1
	have identified any Actual flous waste quantity score TER; if you have NOT iden the hazardous waste quantity has been the highest value from Str. Multiply each by the surcteristics score for each the straight of the highest value from Str. Multiply each by the surcteristics score for each the straight of the highest of	have identified any Actual Contamination flous waste quantity score calculated on TER; if you have NOT identified any Actual the hazardous waste quantity score calculated on the highest value from SI Table 3 or 8 or Multiply each by the surface water wasteristics score for each threat using the Substant Value Substant Value Chain Threat lity/Persistence/cumulation SX/O Product WC Score O O O	have identified any Actual Contamination Targetious waste quantity score calculated on page 4, TER; if you have NOT identified any Actual Contains the hazardous waste quantity score calculated in the highest value from SI Table 3 or 8 for the in. Multiply each by the surface water waste quantity learning to the surface water waste quantity in the highest value from SI Table 3 or 8 for the in. Multiply each by the surface water waste quantity in the table by the surface water waste quantity in the surface water	have identified any Actual Contamination Targets for surface water four waste quantity score calculated on page 4, or a score of 100, TER; if you have NOT identified any Actual Contamination Targets in the hazardous waste quantity score calculated on page 4. In the highest value from SI Table 3 or 8 for the hazardous substance. Multiply each by the surface water waste quantity score, and desceristics score for each threat using the table below. Substance Hazardous	have identified any Actual Contamination Targets for surface water, assign the flous waste quantity score calculated on page 4, or a score of 100, whichever is TER; if you have NOT identified any Actual Contamination Targets for surface water the hazardous waste quantity score calculated on page 4. In the highest value from SI Table 3 or 8 for the hazardous substance factors listed. Multiply each by the surface water waste quantity score, and determine the waste cteristics score for each threat using the table below. Substance Value Waste Quantity Product Ing Water Threat ity/Persistence

SUBFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score (from page 14)	Targets (T) Score	Threat Waste Characteristics (WC) Score (determined above)	Threat Score LR x T x WC/82,5
				(maximum of 100)
Drinking Water	500	0	.18.	0
				(maximum of 100
Human Food Chain	500		180	1.09
				(maximum of 60)
Environmental	500	1.25	180	1.36

SURFACE WATER PATHWAY SCORE

(Drinking Water Threat + Human Food Chain Threat + Environmental Threat) (subject to a maximum of 100) 2, 45

-

CONFIDENTIAL NOT FOR PUBLIC RELEASE Site Name: MHPS Date:

५०५ व ५५०।

SOIL EXPOSURE PATHWAY WORKSHEET

2	
1	1

LIKELIHOOD OF EXPOSURE	Score	Type	References
OBSERVED CONTAMINATION: If evidence indicates presence of surficial contamination (depth of 2 feet or less), assign a score of 550; otherwise, assign 0. Note that a likelihood of exposure score of 0 results in a soil exposure score of 0 (page 23).	550		
LE =	550		
RESIDENT POPULATION THREAT TARGETS			_
2. RESIDENT POPULATION: Determine the number of people occupying residences or attending school or daycare on or within 200 feet of areas of surficial contamination. Calculate the concentration level on SI Table 15 and enter the number of people: Level I:	0		
3. RESIDENT INDIVIDUAL: Assign a score of 50 if any Level I resident population exists. Assign a score of 45 if there are Level II targets but no Level I targets. If no resident population exists, assign 0.	0		
4. WORKERS: Assign a score from the table below for the total number of workers at the site and nearby facilities with areas of surficial contamination associated with the site: Number of Workers Score	5		
Sum =	0		J
6. RESOURCES	0		
Τ-	5		

Site Name: MHPS Date:

SOIL EXPOSURE PATHWAY WORKSHEET (continued)

WASTE CHARACTERISTICS

7. /	Assign the h	azardous waste qu	antity score calcul	ated on page 4.		10	
8. /	Assign the h	ighest toxicity valu	e from SI Table 1	5.		10,000	
	Multiply the Irom the tab		quantity scores.	Assign the Waste Characterist	tics score		
		Product	WC Score	Product WC S	core		1
		0	0	10,000 to <1E+0 10		WC = / {	3
		>0 to <10	1	1E+05 to <1E+0 18	3 [
		10 to < 100	2	1E+06 to < 1E+0 3			1
		00 to < 1,000	3	1E+07 to <1E+0 50	2		1
	1.00	00 to < 10,000	6	1E+08 or greater 10	<u> </u>		
051	CIDENT PO	PULATION THR	EAT SCORE.	LEXTX	wc -		
KE:	SIDEN! PC	POLATION IN	EXI JOUNE.			01	1
				82,5	00	0.6	
NE	ARBY POP	ULATION THRE	AT SCORE:				 1
		ulation within one n	_	 -		/	
sn.	II EYDASI	URE PATHWAY	SCORF:				
		ulation Threat +		tion Threat		1.6	

Nearby Population Threat Score: Assign a score based on the population within a 1-mile radius (use the 1-mile radius population for the air pathway)

Population Within One Mile	Nearby Population Threat Score
<10,000	• 1
10,000 to 50,000	2
>50,000	4

Site Name: MHPS Date:

AIR PATHWAY WORKSHEET

u	KELIHOOD OF RELEASE	Score	Type	References
1.	OBSERVED RELEASE: If sampling data or direct observation support a release to air, assign a score of 550. Record observed release substances on SI Table 17.			
2.	NO OBSERVED RELEASE: If sampling data do not support a release to air, assign a score of 500.	500		
T	LR =	500		
	ACTUAL CONTAMINATION POPULATION: Determine the number of people subject to exposure from a release of a hazardous substance to the air. Calculate levels of exposure on SI Table 17. Level I: people x 10 =			
	Level II: people x 1 = Total =	0		
4.	POTENTIAL TARGET POPULATION: Determine the number of people not subject to exposure from a release of a hazardous substance to the air, and assign the total population score from SI Table 18.	78		
5.	. NEAREST INDIVIDUAL: Assign a score of 50 if there are any Level I targets. Assign a score of 45 if there are Level II targets but no Level I targets. If no Actual Contamination Population exists, assign the Nearest Individual score from SI Table 18.	20		
6	ACTUAL CONTAMINATION SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (SI Table 13) and wetland acreage values (SI Table 19) for environments subject to exposure from the release of a hazardous substance to the air.			
	Sensitive Environment Type Value			
	Wetland Acreage Value			
	Sum =	·	 	
•	7. POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS: Use SI Table 20 to determine the score for sensitive environments not subject to exposure from a release.	1.71		
;	8. RESOURCES	0		
_	T •	99.7/]

DRAFT

JUN 25 1991

Site Name: MHPS
Date:

SI TABLE 19: VALUES FOR POTENTIAL CONTAMINATION AIR TARGET POPULATIONS

		Negrost				A.	opulation	Wikhin Di	falcio Co	tegesy.					
		Individual	,	"	31	101	301	1,001	2.001	10,001	30,007	100,001	300,001	1,000,001	
istance	_ 36	(choose	•	•	•	*	80	•	•	•	*	-	•	•	Population
om Site	Papelition	Mghest)		30	100	300	1,000	3,000	10,000	30,000	100,000	300,000	1,000,000	3,000,000	Valve
neite	90	20 4	1100	2	.(3)	16	52	163	521	1,633	5,214	16,325	52,136	163,246	_5_
0 to % mile	0	20	1	1	1	4	13	41	130	408	1,303	4,081	13,034	40,811	0
X to X mile	410	2	•	0	. 1	1	3	•	28	88	282	882	2,815	8,815	_3
X to 1 mile	7,660	1	0	0	0	1	1	3	(6)	26	83	261	834	2,612	8
1 to 2 miles	43,270	•	•	0	0	0	1	1	3	8	27	83	266	833	27
2 to 3 miles	69,570	•	0	0		0	1	1	1	4	12	38	120	376	12
3 to 4 miles	141,780	0	0	0	0	0	0	1	1	2	7	23	73	229	<u>23</u>
Nearest 6	ndividuai -	20											S	icore -	78

SI TABLE 20: AIR PATHWAY VALUES

The second secon	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Less than 1 asro	0
1 to 50 acres	25
Greater than 50 to 100 scree	75
Greater than 100 to 150 scree	125
Greater then 150 to 200 scree	175
Greater than 200 to 300 scree	250
Greater than 300 to 400 seree	350
Greater then 400 to 500 scree	450
Greater than 500 acres	500

SI TABLE 21: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENT

Okrana			Andre
Oneite	0.10	×	
		x '1	
		* WETCHNOS = 33 Agres (25)	0.625
0-1/4 ml	0.025	×	
		×	
I		* WERMUS 2 81 Acres (75)	0.405
1/4-1/2mi	0.0054	* FED. EUD. SPENES HABITAT (75)	0.405
		* STATE THREAT. SPECIES HABITAT 2(25)	0.27
		×	
-		Total Environments Score -	1.71

Site Name: MHP5 Date:

JUN 25 1991

AIR PATHWAY (concluded)

WASTE CHARACTERISTICS

9.	hazardous waste quantity scor	e calculated on entified any Act	on Targets for the air pathway, assign the page 4, or a score of 100, whichever is tual Contamination Targets for the air by score calculated on page 4.	10	
10	Assign the highest air toxicity/	mobility value	from Si Table 3 or 18.	ا ا	Elimina.
111	Multiply the air pathway toxici	ty/mobility and	waste quantity scores. Assign the Waste		
	Characteristics score from the	table below:			
	Characteristics score from the	table below:		wc -	
	Characteristics score from the	table below:	Early Product (reached to WC Score)	wc -	2
	Characteristics score from the	table below:	10,000 to <1E+05 10	wc -	2
	Characteristics score from the Product 0 >0 to <10	table below:	10,000 to <1E+05 10 1E+05 to <1E+06 18	wc -	2

AIR PATHWAY SCORE: (subject to a maximum of 100)

LR x T x WC 1,21

DRAFT

CONFIDENTIAL - NOT FOR PUBLIC RELEASE

Site Name: MHPS
Date:

SITE SCORE CALCULATION

	S	S ²
GROUND WATER PATHWAY SCORE (S,):	5.09	25.91
SURFACE WATER PATHWAY SCORE (S,w):	2.45	. 6.00
SOIL EXPOSURE PATHWAY SCORE (S):	1.6	2,56
AIR PATHWAY SCORE (S.):	1.21	1.46
SITE SCORE:	$\sqrt{\frac{S_{gv}^2 + S_{sv}^2 + S_{ss}^2 + S_{s}^2}{4}} =$	3.00